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The Galerkin projection procedure for construction of reduced order models of compress-
ible flow is examined as an alternative discretization of the governing differential equa-
tions. The numerical stability of Galerkin models is shown to depend on the choice of
inner product for the projection. For the linearized Euler equations, a symmetry transfor-
mation leads to a stable formulation for the inner product. Boundary conditions for com-
pressible flow that preserve stability of the reduced order model are constructed.
Preservation of stability for the discrete implementation of the Galerkin projection is made
possible using a piecewise-smooth finite element basis. Stability of the reduced order
model using this approach is demonstrated on several model problems, where a suitable
approximation basis is generated using proper orthogonal decomposition of a transient
computational fluid dynamics simulation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Simulation of time-varying, three-dimensional fluid flow remains and will continue to remain for some time, an expen-
sive endeavor. This reality has motivated efforts to seek reduced order models (ROMs) that capture the essential dynamics of
the full simulations, but at a much lower computational cost. Many ROM techniques in fluid mechanics are derived from the
proper orthogonal decomposition (POD)/Galerkin projection approach [1–3]. The original intent of this approach was to
develop low-dimensional models, containing only a few degrees of freedom, to enable and enhance understanding of the
nonlinear dynamics of turbulent flows. Since then, other approaches to building ROMs have been proposed, each with its
own inherent strengths, including the reduced basis method [4], balanced truncation [5,6] and goal-oriented ROMs [7].
The potential usefulness of ROMs has also since expanded to include predictive applications; for example, ROMs have been
used in flow controller design [8], shape optimization [9] and aeroelastic stability analysis [10,11].

The use of POD/Galerkin ROMs in a predictive setting raises some fundamental questions regarding their numerical prop-
erties. In this setting the ROM may be viewed as an alternative discretization of the governing partial differential equations.
As such, the essential properties of any such discretization are stability, consistency and convergence. In many situations
satisfaction of the first two properties guarantees convergence. General results for any of the three properties are lacking
for POD/Galerkin models of compressible fluid flow. This leads to practical limitations; for example, a ROM might be stable
for a given number of modes, but unstable for other choices of basis size (see an example of this for a POD model in
Bui-Thanh et al. [7]).
. All rights reserved.
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The present work primarily addresses numerical stability of linear ROMs for compressible flow. The questions of consis-
tency and convergence are not addressed. A POD basis, or any other empirical basis, is not usually complete, which compli-
cates a general consistency analysis. Also not addressed is the related question of the behavior of a ROM when applied to a
parameter space region not included in the ROM construction. There are promising developments in this area which can be
applied; see, for example, Lieu and Farhat [12]. Despite the lack of a comprehensive numerical theory, it is still desirable to be
able to generate a stable ROM regardless of the quality of the POD basis used to generate it. This is analagous to being able to
run computational fluid dynamics simulations on a series of meshes, from coarse to fine and having confidence that the sim-
ulations will remain stable regardless of the mesh spacing.

Stable formulations for reduced order models have been proposed in other settings. Stability of reduced order models for
electrical circuit analysis is considered by Freund and co-workers [13]. Preservation of the passivity, or energy dissipation, of
the circuit system guarantees stability of the reduced order model. In fluid dynamics, Kwasniok [14] recognizes the role of
energy conservation in ROMs of nonlinear, incompressible fluid flow for atmospheric modeling applications. The Galerkin
projection approach is constructed so that the nonlinear terms in the ROM conserve turbulent kinetic energy or turbulent
enstrophy.

These works and others demonstrate the importance of maintaining the proper energy balance in a reduced order model.
Mathematically, the energy is expressed as an inner product, so that the stability of a reduced order model is often tied to the
definition of this inner product. Rowley [6] has shown how balanced truncation may be viewed as a particular form of the
POD, using the observability Gramian as an inner product. Balanced truncation and balanced POD methods are guaranteed to
be stable for linear systems and also preserve the stability of an equilibrium point at the origin for nonlinear systems.

In the present work, we again demonstrate that the inner product used to define the Galerkin projection is closely tied
to the stability of the resulting model. We further show how it is possible to construct stable ROMs for any choice of basis
using Galerkin projection. An energy stability analysis is carried out for Galerkin methods applied to the linearized Euler
equations, resulting in an inner product that guarantees certain stability bounds satisfied by the ROM. A means of imple-
menting boundary conditions for the ROM that preserve stability is also developed. Implementation of the ROM is then
defined in terms of finite element representations of the simulation data and of the POD modes. Along with numerical
quadrature rules of sufficient accuracy, this approach ensures that the continuous stability estimates are satisfied by
the discrete computer implementation. ROMs are then constructed for several model fluid flows using the schemes devel-
oped from the stability analysis.

2. The POD/Galerkin approach

This section describes the POD/Galerkin method for reducing the order of computational models for solving partial
differential equations. The approach consists of two steps: calculation of a basis using the POD of an ensemble of flowfield
realizations, followed by Galerkin projection of the governing partial differential equations onto the basis. The first step
involves the transfer of kinematic information from the high-fidelity simulation to a relatively small number of modes.
The second step involves a translation of the full-system dynamics to the implied dynamics of these modes. When successful,
the result of this procedure is a set of time-dependent ordinary differential equations in the modal amplitudes that
approximately describes the flow dynamics of the full-system of PDEs for some limited set of flow conditions.

2.1. Proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a mathematical procedure that, given an ensemble of data, constructs a
basis for the ensemble that is optimal in a well-defined sense. The mathematical development of POD for fluid flow appli-
cations in particular is described in detail in Lumley [15] and Holmes et al. [3]. The essentials of this development and the
properties of POD most important to reduced order modeling are presented in this section.

Consider an ensemble fukðxÞg of real vector fields on the domain x 2 X. In the present context, the ensemble consists of a
set of instantaneous snapshots of a numerical simulation solution field. The u’s are assumed to belong to a Hilbert space
HðXÞ with associated inner product (f, g). Following the approach of Rowley et al. [16], we will defer the definition of the
inner product until a particular application of the POD is considered, requiring only that it obey the usual requirements
for an inner product. Note that this results in a general formulation for the POD that differs in some aspects from formulas
derived for the L2ðXÞ Hilbert space.

The POD basis is a set of functions f/jðxÞg that is the ‘‘best” linear basis for description of the ensemble. The flowfield state
vector u 2 spanf/jg is represented as a linear combination of the POD modes,
uðx; tÞ ¼
X

j

ajðtÞ/jðxÞ: ð1Þ
The POD modes, or empirical eigenfunctions, are defined by requiring that the averaged projection of the ensemble uk onto /

is a maximum:
max
/2HðXÞ

hðu;/Þ2i
k/k2 ; ð2Þ
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where k � k is the norm generated by the inner product. The averaging operator h�i used in (2) could be an ensemble average
over many separate flow realizations, or it could be a time-average taken from different samples of a single realization.

The constrained optimization problem (2) with constraint k/k ¼ 1 reduces to the eigenvalue problem
R/ ¼ k/; ð3Þ
where
R/ � hukðuk;/Þi: ð4Þ
The operator R is self-adjoint and non-negative definite; if we further assume that R is compact, then there are exists a
countable set of non-negative eigenvalues ki, with associated eigenfunctions /i. The eigenfunctions, appropriately normal-
ized, form an orthonormal subspace of H, i.e. ð/i;/jÞ ¼ dij.

The POD modes are the eigenfunctions /i associated with nonzero ki. Taking the inner product of (3) with /, it is straight-
forward to show that hðuk;/iÞ

2i ¼ ki. In other words, the magnitude of the eigenvalue is equivalent to the average energy of
the projection of the ensemble onto the associated eigenfunction, where the square of the projection is interpreted as an
energy measure. The POD modes may be ordered according to the magnitude of their eigenvalue, with k1;/1 equal to the
eigenvalue/eigenfunction pair with the largest eigenvalue, kN equal to the smallest non-zero eigenvalue and
k1 > k2 > � � � > kn > � � � > kN . In building reduced order models one is interested in truncating the POD basis and retaining
only the M < N most energetic modes. It can be shown that the sequence of truncated POD bases forms an optimal set, in
the sense that a POD basis comprised of M modes describes more energy (on average) of the ensemble than any other linear
basis of the same dimension M. This compression of the ensemble energy into a minimum number of modes makes the POD
basis attractive for reduced order modeling.

In practice, the uk are vectors of state variables at discrete grid point locations, each containing a single solution from the
numerical simulation. They will have length Nr, where N is the total number of grid points and r is the number of dependent
variables describing the flow state. Thus, the discretized version of (3) will be an eigenvalue problem of order Nr. For N � K ,
where K is the number of flowfield snapshots used, this procedure is costly and, it turns out, inefficient. Sirovich [17] showed
how the eigenvalue problem (3) can be reduced to order K, resulting in a much more efficient procedure for N � K . This is
the so-called ‘‘method of snapshots” for computing a POD basis.

2.2. Galerkin projection

The second step for constructing the reduced order model is to project the governing PDEs onto the POD basis.
Consider a generic nonlinear PDE, containing a linear term as well as quadratic and cubic nonlinearities, that governs the

behavior of a time-dependent vector field uðx; tÞ,
ou
ot
¼ LuþN 2ðu;uÞ þN 3ðu;u;uÞ: ð5Þ
The operator L is a linear operator, N 2 is a quadratic nonlinear operator and N 3 is a cubic nonlinear operator. The Galerkin
projection of Eq. (5) onto each POD mode /j is
ou
ot
;/j

� �
¼ ðLu;/jÞ þ ðN 2ðu;uÞ;/jÞ þ ðN 3ðu;u;uÞ;/jÞ: ð6Þ
Substituting the POD decomposition for u into (6), applying the algebraic rules of inner products along with orthogonality of
the POD basis gives
dak

dt
¼
X

l

alð/k;Lð/lÞÞ þ
X
l;m

alamð/k;N 2ð/l;/mÞÞ þ
X
l;m;n

alamanð/k;N 3ð/l;/m;/nÞÞ: ð7Þ
This is the reduced order model for Eq. (5) by the POD/Galerkin method. It is a time-dependent system of ODE’s of order
equal to the number of retained POD modes M, with k ¼ 1;2; . . . ;M. The inner products in (7) are functionals of the known,
time-independent POD modes /ðxÞ, and may be precomputed before integration of the ROM.

The Galerkin projection step here is applied to the original, continuous PDEs. In many applications of reduced order mod-
eling, the discrete representation of the equations is projected onto the modes. This discrete approach has the advantage
that, depending on the implementation, boundary condition terms present in the discretized equation set are inherited
by the ROM. Also, certain properties of the numerical scheme used to solve the full equations may be inherited by the
ROM. The continuous approach, used in the present work, has the advantages that is does not require an intrusive or
code-specific implementation and it may be more amenable to analysis.

2.3. Inner product

The inner product serves several purposes in the POD/Galerkin procedure. Fundamentally, it helps define the Hilbert
space on which the analysis proceeds. It defines the projection of a solution onto the POD basis, and thereby also defines
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the mathematical quantity that the POD basis optimally represents. It also defines the projection of the governing equations
onto the POD basis, which leads to the POD/Galerkin dynamical model.

The majority of POD/Galerkin models for fluid flow have used the incompressible Navier–Stokes equations as the govern-
ing equation set. In this case, a natural choice of inner product is the L2 inner product, defined here on the spatial domain X,
ðu;vÞ ¼
Z

X
uv dX: ð8Þ
This is because if the solution vector is taken to be the velocity vector ui, then the inner product corresponds to a measure of
the global kinetic energy. This makes the POD basis physically sensible, since the modes optimally represent the kinetic en-
ergy present in the ensemble from which they are generated. This choice also leads to a straightforward representation of the
solution energy in terms of modal amplitudes. Suppose an orthonormal set of POD modes is used to represent the velocity
field,
ui ¼
XM

k¼1

akðtÞ/i
kðxÞ; ð9Þ
then the global kinetic energy at any instant in time is
2E ¼ ðui;uiÞ ¼
XM

k¼1

a2
k : ð10Þ
3. Stability of Galerkin approximations

This section examines stability of Galerkin approximations to a class of linear partial differential equations, as well as sta-
bility of such approximations to equations governing linearized compressible flow. In the initial theoretical development, C1

smooth solutions and equation coefficients are assumed. The smoothness assumption will be relaxed when the discrete com-
puter implementation of the method is discussed. The stability properties of the PDEs are established first using the energy
method. A stable Galerkin projection scheme is then derived based on the results of the energy method analysis.

3.1. Stability for a scalar linear equation

Consider the scalar initial value problem, or Cauchy problem,
ou
ot
¼ Lu; x 2 Rn; t P 0; ð11Þ

uðx;0Þ ¼ f ðxÞ: ð12Þ
Here L is a linear differential operator with constant coefficients. The operator L is semi-bounded w.r.t. the inner product ð�; �ÞE
if it satisfies the following inequality for all sufficiently smooth functions w ¼ wðxÞ; w 2 L2,
ðw; LwÞE 6 aðw;wÞE; ð13Þ
where a is a real constant. In this case, well-posedness follows from the relation
d
dt
ðu;uÞE 6 aðu; uÞE: ð14Þ
In fact, the following theorem holds [18]:
The Cauchy problem given by (11) is well-posed if and only if the operator L is semibounded w.r.t. an inner product ð�; �ÞE which

corresponds to a norm equivalent to the L2-norm.
Now consider a Galerkin approximation to (11), uN 2 H, satisfying
ouN

ot
;/

� �
E

¼ ðLuN;/ÞE ð15Þ
for all / 2 H and suppose that L is semi-bounded w.r.t. ð�; �ÞE. Setting / ¼ uN leads to the following stability estimate for the
Galerkin approximation [19,20]:
1
2

d
dt
kuNk2

E 6 akuNk2
E : ð16Þ
Thus,
kuNðx; tÞkE 6 eatkuNðx;0ÞkE: ð17Þ
The result (17) means that the numerical solution is bounded in a way consistent with behavior of exact solutions of the
original differential equation, i.e. it is stable. The practical implication of these results is the opportunity to pose a stable
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Galerkin approximation to a well-posed linear differential equation by choosing an appropriate inner product, one with re-
spect to which the differential operator is semi-bounded. These results can be extended to variable-coefficient operators,
including linear hyperbolic systems of equations such as the linearized Euler equations (discussed in the next section).

3.2. Stability of the Galerkin approximation for compressible flow

3.2.1. Stability for a linear hyperbolic system of equations
This section, based on the energy method analysis of Gustafsson and Sundstrom [21], extends the stability result obtained

previously for scalar equations to symmetrizable hyperbolic systems of equations.
First consider a linear hyperbolic system of equations for x 2 Rn
ou
ot
þ Aj

ou
oxj
þ Cu ¼ 0 ð18Þ
In this notation u is a r � 1 vector and Aj and C are r � r matrices that vary smoothly in space but do not vary with time.
Suppose that this equation can be symmetrized by introduction of a positive definite symmetric r � r matrix H,
H
ou
ot
þ HAj

ou
oxj
þ HCu ¼ 0 ð19Þ
such that HAj are each symmetric matrices. Then, using the symmetry properties of H and HAj, the following energy expres-
sion is derived:
o

ot

Z
X

uT HudX ¼ �
Z

oX
uT HðAjnjÞudSþ

Z
X

uT o

oxj
ðHAjÞ � HC � CT H

� �
udX: ð20Þ
Now consider the pure initial value problem, ignoring the contribution from the boundary surface integral in (20). Noting
that H can be decomposed into H ¼ Q T Q , the right hand side of (20) is
Z

X
uT o

oxj
ðHAjÞ � HC � CT H

� �
udX ¼

Z
X

uT QT Q T�1 o

oxj
ðHAjÞQ�1 � QCQ�1 � ðQCQ�1ÞT

� �
QudX: ð21Þ
Thus (20) becomes
o

ot

Z
X

uT HudX 6 2a
Z

X
uT HudX; ð22Þ
where 2a is an upper bound on the eigenvalues of
QT�1 o

oxj
ðHAjÞQ�1 � QCQ�1 � ðQCQ�1ÞT :
The integral ðu;vÞH �
R

X uT Hv dX is an energy inner product. The corresponding energy norm kukH ¼ ðu;uÞ
1=2
H is equivalent to

the L2 norm and establishes well-posedness (recall Section 3.1) by satisfying
kuðx; tÞkH 6 eatkuðx;0ÞkH: ð23Þ
In turn, the corresponding Galerkin approximation uN using the energy norm satisfies the stability condition
kuNðx; tÞkH 6 eatkuNðx; 0ÞkH: ð24Þ
3.2.2. Stability for the linearized Euler equations
If a compressible fluid system can be described by inviscid, small-amplitude perturbations about a steady-state mean

flow, then the linearized Euler equations may be used. In the following development, stability estimates for the linearized
Euler equation initial value problem are derived, which lead to stable Galerkin approximations using appropriate inner prod-
ucts. The stability results follow from the results of the previous section, since the linearized Euler equations are a symmetr-
izable hyperbolic system of PDEs. Note that many other hyperbolic systems of interest are symmetrizable, particularly those
that are derived from conservation laws. Examples include the nonlinear Euler equations, compressible Navier–Stokes equa-
tions [22] and the shallow water equations [23]. It is possible to derive the symmetrizer of a matrix, or set of matrices, using
the eigenvectors of the matrix (or matrices); see, e.g. Ref. [24].

For the compressible fluid, let the state vector be decomposed into a steady mean and time-varying fluctuating part,
qðx; tÞ ¼ �qðxÞ þ q0ðx; tÞ, where q ¼ u v w f p½ �T . The three components of the velocity vector are u; v and w, the specific
volume is f and the pressure is p. The density q is the inverse of the specific volume. The linearized Euler equations in these
variables are:
oq0

ot
þ Að�qÞ � rq0 þ Cð�qÞq0 ¼ 0 ð25Þ
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where
1 Thi
lineariz
disturba
Að�qÞ � ½Axð�qÞ;Ayð�qÞ;Azð�qÞ�T ;

Ax ¼

�u 0 0 0 �f

0 �u 0 0 0
0 0 �u 0 0
��f 0 0 �u 0
c�p 0 0 0 �u

2
6666664

3
7777775

Ay ¼

�v 0 0 0 0
0 �v 0 0 �f

0 0 �v 0 0
0 ��f 0 �v 0
0 c�p 0 0 �v

2
6666664

3
7777775

Az ¼

�w 0 0 0 0
0 �w 0 0 0
0 0 �w 0 �f

0 0 ��f �w 0
0 0 c�p 0 �w

2
6666664

3
7777775

C ¼

o�u
ox

o�u
oy

o�u
oz

o�p
ox 0

o�v
ox

o�v
oy

o�v
oz

o�p
oy 0

o�w
ox

o�w
oy

o�w
oz

o�p
oz 0

o�f
ox

o�f
oy

o�f
oz � o�u

ox þ o�v
oy þ o�w

oz

� �
0

o�p
ox

o�p
oy

o�p
oz 0 c o�u

ox þ o�v
oy þ o �w

oz

� �

2
6666666664

3
7777777775
In this case, the symmetrizing matrix H is given by
H ¼

�q 0 0 0 0
0 �q 0 0 0
0 0 �q 0 0
0 0 0 a2c�q2�p �qa2

0 0 0 �qa2 ð1þa2Þ
c�p

2
6666664

3
7777775

ð26Þ
where a2 is an arbitrary real, nonzero parameter. The ‘‘symmetry inner product” is then1
ðq0ð1Þ ;q0ð2Þ ÞH ¼
Z

X

�qðu0ð1Þu0ð2Þ þ v 0ð1Þv 0ð2Þ þw0
ð1Þ

w0
ð2Þ Þ þ a2c�q2�pf0

ð1Þ
f0
ð2Þ þ 1þ a2

c�p
p0
ð1Þ

p0
ð2Þ þ a2 �q f0

ð2Þ
p0
ð1Þ þ f0

ð1Þ
p0
ð2Þ

� �� �
dX: ð27Þ
Due to the result for linear hyperbolic systems given by Eq. (24), Galerkin approximations for the linearized Euler equations
based on the inner product ð�; �ÞH are stable (for the initial value problem). Introducing a modal basis q0M ¼

PM
k¼1akðtÞ/kðxÞ

with
/j ¼ /1
j /2

j /3
j /4

j /5
j

h iT
; ð28Þ
the Galerkin projection is
/j;
oq0M
ot

� �
H

þ ð/j;Að�qÞ � rq0MÞH þ ð/j; Cð�qÞq0MÞH ¼ 0: ð29Þ
Substituting the modal basis into (29) leads to the ROM,
_aj ¼ �
XM

k¼1

akð/j;Að�qÞ � r/kÞH �
XM

k¼1

akð/j;Cð�qÞ/kÞH: ð30Þ
Note that for a spatially uniform mean state, the result from Eq. (22) applied to the linearized Euler equations leads to
o

ot

Z
X

q0T Hq0dX ¼ 0; ð31Þ
and the semi-discrete Galerkin approximation satisfies the strong stability condition
kq0MðtÞkH ¼ kq0Mð0ÞkH: ð32Þ
The uniform mean flow case allows for a clean stability analysis, since the mean flow supports only neutral or decaying dis-
turbances. For non-uniform flow the continuous equations may support exponentially growing instabilities, an example of
which is the Kelvin–Helmholtz shear layer instability. It is then difficult to distinguish between natural instability modes
supported by the continuous equations and spurious instabilities generated by the numerical discretization.

Note that the symmetry inner product introduced here is only directly applicable to Galerkin approximations of the lin-
earized Euler equations. One could consider adapting this inner product to a Galerkin treatment of the full nonlinear Euler
s form of the symmetrization follows the derivation of Gustafsson and Sundstrom [21]. Other symmetric forms of both the linearized Euler and
ed Navier–Stokes equations can be found in Oliger and Sundstrom [25] and in Abarbanel and Gottlieb [26]. In an earlier work, Chu [27] derived a
nce energy equation using a similar inner product without explicit consideration of symmetrization.
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equations by specifying a steady mean flow and projecting the resulting quasi-linear equations using the symmetry inner
product. This would not necessarily lead to a stable approximation, since the fluctuations about the specified mean state will,
in general, be nonlinear. However, in practice this may provide a superior inner product than other naïve choices, e.g. the L2

inner product.
This situation differs from the usual stability arguments applied to finite difference/finite volume type discretizations of

hyperbolic equations. There, the stability of the discretization for linearized ‘‘frozen coefficient” equations leads to stability
of the method when applied to the corresponding nonlinear equations. This is due to the fact that implementation of these
methods uses the same type of time-linearization as that of the stability analysis. For a POD/Galerkin method of the type
considered here, this is not possible since both the POD computation and the projection depend upon a specified weighted
inner product, the weights of which are not a function of time.

4. Fluid ROM boundary conditions

Boundary conditions may be efficiently implemented for a Galerkin ROM using a weak formulation. Further, the energy
stability analysis of Section 3.2 allows for weak boundary conditions that preserve stability.

Consider Galerkin projection of the linearized Euler equations onto a modal basis f/jg. Also assume a uniform base flow,
such that r�q ¼ 0. Integrating the second term of (29) by parts gives
/j;
oq0M
ot

� �
H

¼ �
Z

oX
/T

j Hð�qÞðAð�qÞ � nÞq0M dSþ
Z

X
ðr � ½/T

j Hð�qÞAð�qÞ�Þq0M dX: ð33Þ
Boundary conditions may now be implemented through modification of the perturbed state by substituting q0M  q0b in the
boundary integral appearing in (33).

Inviscid compressible flow boundary conditions are most often implemented in terms of local one-dimensional charac-
teristics defined in the direction normal to the boundary. As detailed in the Appendix, the matrix Að�qÞ � n may be diagonal-
ized using the transformation
Að�qÞ � n ¼ SKS�1; ð34Þ
where the vector of ‘‘characteristic variables” is defined as
V0 ¼ S�1q0: ð35Þ
The boundary conditions are then given on the domain boundary oX as V0 ¼ V0b. The elements of the vector V0b corresponding
to outgoing characteristic waves are constructed from the local numerical solution, while elements corresponding to incom-
ing characteristics are specified. Eq. (33) in terms of characteristic boundary conditions is
/j;
oq0M
ot

� �
H
¼ �

Z
oX

/T
j Hð�qÞSKV0b dSþ

Z
X
ðr � ½/T

j Hð�qÞAð�qÞ�Þq0M dX: ð36Þ
Stability of the boundary value problem is examined by subtituting q0M for / in (36). Making this substitution, exploiting the
symmetry of Hð�qÞAð�qÞ and integrating by parts once again gives
1
2

d
dt
kq0Mk

2
H ¼

Z
oX

1
2

q0TMHð�qÞðAð�qÞ � nÞq0M � q0TMHð�qÞSKV0b

� �
dS: ð37Þ
Stable boundary conditions are those for which the right hand side of (37) is non-positive.
Implementation of the boundary conditions is simplified if the ROM without boundary conditions is calculated first,

according to (30). Denoting the unmodified boundary integral Ibujk
�
R

oX /T
j Hð�qÞðAð�qÞ � nÞ/k dS and the boundary integral with

boundary conditions enforced as Ibjk
, the ROM becomes
_aj ¼ �
XM

k¼1

akð/j;Að�qÞ � r/kÞH �
XM

k¼1

akð/j;Cð�qÞ/kÞH þ
XM

k¼1

akðIbujk
� Ibjk

Þ: ð38Þ
4.1. Solid surface boundary condition

The linearized solid wall boundary condition for a surface with unit normal n (pointing out of the fluid domain), displaced
a small distance g from equilibrium and moving at velocity _g in the direction of �n, is
u0 � n ¼ � _g� �u � rg � u0b: ð39Þ
Here u �[u v w]T is the fluid velocity vector. The solid wall boundary condition is posed as a perfectly reflecting condition,
using the characteristic decomposition. For a stationary wall, the incoming characteristic, V 05, is set equal to the outgoing
characteristic, V 04. When the wall velocity is u0b, the following relation satisfies the boundary condition (39):
V 05 ¼ V 04 � 2u0b ð40Þ
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The boundary integrand in (33) becomes
/T
j Hð�qÞðAð�qÞ � nÞq0M ¼ �q�c/n

j ðu0M � n� u0bÞ þ /n
j p0M þ /5

j u0b: ð41Þ
where
/n
j � ðn1/

1
j þ n2/

2
j þ n3/

3
j Þ: ð42Þ
The last two terms in the boundary integrand are the same as the unaltered integrand, only with u0M � n ¼ u0b, while the first
term acts as a penalty term that forces the velocity to the prescribed boundary value.

Evaluation of the stability relation (37), assuming u0b ¼ 0 gives
1
2

d
dt
kq0Mk

2
H ¼ ��q�cðu0M � nÞ

2
6 0; ð43Þ
showing that the boundary condition for the Galerkin scheme is stable, even when the approximation modes do not them-
selves satisfy the boundary condition.

Inserting the modal representation for p0M and u0M into (41) and applying the surface integral over the no-penetration sur-
face oXP , leads to the following term appearing in the jth ROM equation:
IPj
¼
XM

k¼1

akðtÞ
Z

oXP

/n
j ð/

5
k þ �q�c/n

kÞdSþ
Z

oXP

ð/5
j � �q�c/n

j Þu0b dS: ð44Þ
4.2. Far-field boundary conditions

Far-field conditions may be useful and, in some cases, necessary for stability of a ROM formulation. The computational
fluid dynamics (CFD) code used to generate the fluid modal basis incorporates some form of farfield boundary condition
which, if it is a linear boundary condition, will also be satisfied by the fluid modes due to the properties of POD. However,
to ensure a well-posed and stable Galerkin approximation, farfield boundary conditions can be incorporated into the ROM.

Consider the boundary integral term from (33) evaluated over a farfield boundary oXF . The procedure for application of an
approximately non-reflecting condition is as follows. The components of V0 corresponding to characteristic waves traveling
into the domain are set to zero. The terms in the boundary integrand are re-cast in terms of the modal representation, which
leads to boundary terms in the ROM. It can be proven that, like the solid wall condition, this boundary condition formulation
results in a stable Galerkin scheme for uniform flow. The details of the far-field boundary condition implementation are gi-
ven in the Appendix.

5. Approximation space and numerical quadrature

Thus far, the stability estimates and associated inner products for Galerkin ROMs have only been given in continuous
form. They are valid only if the relevant integrals are evaluated exactly. This is similar to the situation occurring in numerical
analysis of spectral methods. With spectral methods, this problem is generally resolved by applying a high-precision numer-
ical quadrature that is able to integrate exactly the spectral projections. We borrow from this approach in the following way.
The POD basis is first described by a finite element representation on the computational mesh. This is fairly general, as long
as the simulation code can output data to a nodal mesh and the mesh can be cast as a collection of finite elements. In the
present work we use piecewise-linear ðC0Þ finite elements to represent the snapshot data and the POD modes. It is then pos-
sible to construct a numerical quadrature operator that exactly integrates the inner product of the finite element represen-
tations. The introduction of C0 finite elements requires a relaxation of the smoothness requirements on q0; Hð�qÞ and Að�qÞ. The
projection integrals are then to be interpreted in the sense of distributions.

Consider the d-dimensional spatial domain X, subdivided into Ne elements, Xe; e ¼ 1; . . . ;Ne. The finite element represen-
tation of the state variable q0 is
q0he ðxÞ ¼
XNn

i¼1

NiðxÞq0i; x 2 Xe ð45Þ
where Nn is the number of nodes that define the element Xe and Ni are the linear shape functions. Consider the case of
linear tetrahedral elements, where Nn ¼ 4 and the shape functions span the space of all possible linear functions on the
element. A quadratic function f ðxÞ can be integrated exactly over an element by a quadratic Gauss quadrature rule of the
form
 Z

X
f ðxÞdXe ¼

X4

j¼1

x0je f ðxje Þ; ð46Þ
where x0je are the integration weights and the xje are the Gauss integration points of the element.
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Now suppose the integral to be computed is a weighted inner product of two state vector realizations u(x) and v(x),
ðu;vÞH ¼
Z

X
uT Hð�qÞv dX: ð47Þ
The discrete representations of the vectors u and v are written as uh and vh, respectively, with length equal to the number of
mesh nodes N times the dimension of the vector, r. Let Hh

e ð�qÞ be the r � r element inner product matrix, taken to be piecewise
constant over each element. The formula for numerical integration can be written
ðu;vÞH ¼ uhT
Wvh ð48Þ
where W is a sparse block matrix comprised of N � N blocks of dimension r � r. The k,lth block of W is wklI, with
wkl ¼
XNe

kl

e¼1

Hh
e

X4

j¼1

Nke ðxje ÞNle ðxje Þx
0
je
; ð49Þ
and where the outer sum is over the elements connected to the k–l nodal ‘‘edge.”
The finite element representation and associated Gauss quadratures allow for a general and flexible means of creating

stable, projection-based ROMs. The only requirements are that data are stored at nodes of the mesh and that the mesh
can be decomposed into finite elements of the desired order. Higher order representations of the base flow and inner product
matrix Hð�qÞ are also possible, given a quadrature rule of sufficient order.
6. Results

The method for generating stable ROMs is exercised on several model problems in this section. Emphasis is placed on
reproducing a given CFD solution for a single set of flow conditions in a stable and accurate fashion. This is viewed as an
essential pre-requisite for applying the method to more complex situations, such as building ROMs valid across a parameter
space or range of flow conditions.

6.1. ROM generation procedure

For the results presented in this section, the fluid simulation data were generated using the AERO-F simulation code [28].
AERO-F is an arbitrary Lagrangian–Eulerian code that can be used for high-fidelity aeroelastic analysis. The linearized Euler
solver capability of AERO-F was used in the present work; details of the finite volume discretization and linearization can be
found in Lieu et al. [11].

The fluid ROMs were built using nondimensionalized equations and CFD solutions. The nondimensionalization used was
f� ¼ f=fref ; u� ¼ u=cref ; v� ¼ v=cref ; w� ¼ w=cref ; p� ¼ p=qref c

2
ref , where * quantities are non-dimensional.

The fluid POD modes are generated by solution of an eigenproblem, as explained in Section 2. A code was written that
reads in the snapshot data written by AERO-F, assembles the necessary finite element representation of the snapshots
and computes the numerical quadrature necessary for evaluation of the inner products. The code performs all the calcula-
tions in parallel using distributed matrix and vector data structures and parallel eigensolvers from the Trilinos project [29],
allowing for large data sets and a relatively large number of POD modes. The libmesh finite element library [30] was used to
compute element quadratures. This code also projects the modes onto the linearized Euler equations and outputs the result-
ing fluid ROM coefficient matrix.

6.2. Test case: random basis

To demonstrate the stability properties of the fluid ROM, we first consider the case where the modal basis is composed of
a sequence of random vector fields that decay to zero at the boundary. The spatial domain is a rectangular prism, discretized
by tetrahedral elements. The base flow is taken to be spatially uniform; such a flow is physically stable to any linear distur-
bance. Projecting the linearized Euler equations onto the random basis leads to a linear ROM, written here as
_aj ¼ Ajkak: ð50Þ
The ROM is stable if the maximum real part of the eigenvalues of the matrix Ajk, denoted krmax , is less than or equal to zero.
Fig. 1 plots krmax for ROMs consisting of one through eight basis functions. Using the symmetry inner product ð�; �ÞH to
construct the ROM results in a krmax of zero to machine precision. This is completely consistent with convection of a neutral
disturbance in uniform flow and confirms that for any modal basis, this property of the linearized Euler equations is
preserved by the ROM. For comparison, a second set of ROMs was constructed using the vector form of the unweighted
L2 inner product, Eq. (8), to project the equations. As seen in the figure, depending on the number of modes used in the
ROM, the ROM can be stable or unstable. While this is a somewhat extreme case using ‘‘bad” modes, it is often the case that
POD modes with small energy are largely comprised of numerical error and other high-frequency ‘‘noise.” The symmetry
inner product method ensures that such modes will not destabilize the ROM.
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Fig. 1. Maximum real part of the eigenvalues of the ROM coefficient matrix Ajk for the case of random modes on a uniform base flow.
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6.3. Test case: propagation of a one-dimensional acoustic pulse

A ROM is now constructed using CFD solutions of the following simple model problem. A one-dimensional acoustic pulse
is prescribed as the initial condition,
u0 ¼ expð�ðx� x0Þ2Þ; p0 ¼ �q�cu0;
q0
�q
¼ p0

�p

� �1
c

v 0 ¼ w0 ¼ 0; x0 ¼ 5 ð51Þ
The mean flow is taken as a uniform flow at Mach number M ¼ 0:5. The pulse convects in the positive x direction at speed
�uþ �c, maintaining its shape. This problem was solved on a three-dimensional rectangular prism domain, with extent
0 6 x 6 20; �5 6 y 6 5; 0 6 z 6 1. The grid was composed of unstructured tetrahedral elements. Slip wall boundary condi-
tions were applied on the constant y and z boundaries. The CFD simulation was performed over a nondimensional time
Ttot ¼ 5:25 with a total of 512 time steps. Snapshots were saved every eight simulation time steps and used to construct
a 16 mode POD basis. Using the symmetry inner product, this basis captured essentially 100% of the snapshot energy (to
six digits), while eight modes of this basis captured 99.5% and four modes captured 85.5%. The L2 basis performed similarly
in terms of energy capture of the snapshots.

Four different procedures were used to generate a fluid ROM for this problem: symmetry inner product with and without
slip wall boundary conditions applied to the ROM and unweighted L2 inner product with and without slip wall boundary
conditions. The CFD code applies the slip wall condition only weakly, so that in general non-zero velocities were generated
normal to the slip walls, resulting in non-zero boundary integrals in the ROM construction. Fig. 2 shows the maximum real
part of the ROM eigenvalues for the different types of ROM. Only the symmetry inner product with boundary conditions
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